6 research outputs found

    M2: Malleable Metal as a Service

    Full text link
    Existing bare-metal cloud services that provide users with physical nodes have a number of serious disadvantage over their virtual alternatives, including slow provisioning times, difficulty for users to release nodes and then reuse them to handle changes in demand, and poor tolerance to failures. We introduce M2, a bare-metal cloud service that uses network-mounted boot drives to overcome these disadvantages. We describe the architecture and implementation of M2 and compare its agility, scalability, and performance to existing systems. We show that M2 can reduce provisioning time by over 50% while offering richer functionality, and comparable run-time performance with respect to tools that provision images into local disks. M2 is open source and available at https://github.com/CCI-MOC/ims.Comment: IEEE International Conference on Cloud Engineering 201

    Towards non-intrusive software introspection and beyond

    Full text link
    Continuous verification and security analysis of software systems are of paramount importance to many organizations. The state-of-the-art for such operations implements agent-based approaches to inspect the provisioned software stack for security and compliance issues. However, this approach, which runs agents on the systems being analyzed, is vulnerable to some attacks, can incur substantial performance impact, and can introduce significant complexity. In this paper, we present the design and prototype implementation of a general-purpose approach for Non-intrusive Software Introspection (NSI). By adhering to NSI, organizations hosting in the cloud can as well control the software introspection workflow with reduced trust in the provider. Experimental analysis of real-world applications demonstrates that NSI presents a lightweight and scalable approach, and has a negligible impact on the performance of applications running on the instance being introspected.Accepted manuscrip

    A secure cloud with minimal provider trust

    Full text link
    Bolted is a new architecture for a bare metal cloud with the goal of providing security-sensitive customers of a cloud the same level of security and control that they can obtain in their own private data centers. It allows tenants to elastically allocate secure resources within a cloud while being protected from other previous, current, and future tenants of the cloud. The provisioning of a new server to a tenant isolates a bare metal server, only allowing it to communicate with other tenant's servers once its critical firmware and software have been attested to the tenant. Tenants, rather than the provider, control the tradeoffs between security, price, and performance. A prototype demonstrates scalable end-to-end security with small overhead compared to a less secure alternative.Published versio

    Docker Container Deployment in Distributed Fog Infrastructures with Checkpoint/Restart

    No full text
    International audienceIn fog computing environments container deployment is a frequent operation which often lies in the critical path of services being delivered to an end user. Although creating a container can be very fast, the container's application needs to start before the container starts producing useful work. Depending on the application this startup process can be arbitrarily long. To speed up the application startup times we propose to snapshot the state of fully-deployed containers and restart future container instances from a pre-started application state. In our evaluations based on 14 real micro-service containers, this technique effectively reduces the startup phase with speedups between 1x (no speedup) and 60x
    corecore